Methodology implemented in statistical modules designed for FBS estimation
Hold re-run of Food
, Stock
, Loss
and Feed
modules until both Trade
and Production
modules have completed
yEd file: 2016-06-20-faoswsProduction.graphml
Public file: livestock_flow.jpg
yEd file: 2016-06-20-faoswsProduction-livestock.graphml
yEd file: 2016-09-05-faoswsStock.graphml
Report AMIS: 2016-05-18-stocks-amis.pdf
\Delta \mathsf{S}\_{t-i}
(ΔS;)t
k
\epsilon_(t)
(ε)\[ \Delta \mathsf{S}_{t} = \beta \left( \sum\limits_{i=1}^{k} \Delta \mathsf{S}_{t-i} \right) + \epsilon_{t}\ \]
We could alternatively express this as
\[ \Delta \mathsf{S}_{t} \sim N \left( \beta \sum\limits_{i=1}^{k} \Delta \mathsf{S}_{t-i} , \sigma^{2} \right) \]
lm
ImplementationThe current implementation of the module is different from the Orange Book. The module is using only delta production. The formula currently included in the Orange Book may need to be subject to revision.
stocksModel <- lm(deltaStocks ~ deltaProduction,
data = newSuaData[deltaProduction != 0 &
deltaStocks != 0])
Model based on historical changes
Calculate total number of tourist days N\_{T}
\[ N_{T} = N_{D} + N_{O} \bar{D} \]
N\_{D}
N\_{O}
\bar{D}
Change in amount of food availability for commodity i
in country j
\[ \Delta TC_{ij} = - \sum_{k = 1, k \ne j}^{m} N_{jk} f_{ij} + \sum_{l = 1, l \ne j}^{m} N_{lj} f_{il} \]
Suggested alternative notation:
\[ Net TC_{ij} = \sum_{l = 1, l \ne j}^{m} N_{lj} f_{il} - \left( \sum_{k = 1, k \ne j}^{m} N_{jk} \right) * f_{ij} \]
This can be simplified to
\[ \Delta TC_{ij} = - N_{T} f_{ij} + \sum_{l = 1, l \ne j}^{m} N_{lj} f_{il} \]
The current implementation of the module is different from the Orange Book. […]
touristModel <- lm(...)
Per-capita Food Consumption:
\[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} + e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } + \phi_{i} * \mathsf{FoodPC}_{t-1,ij} \]
This corresponds to
\[ \mathsf{FoodPC}_{t,ij} = \left( 1 + \phi_{i} \right) \mathsf{FoodPC}_{t,ij} + e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } \]
expanding per-capita food consumption
\[ \mathsf{FoodPC}_{t,ij} = \frac{ \mathsf{Food}_{t,ij} }{ \mathsf{Pop}_{t,i} } \]
\[ \frac{ \mathsf{Food}_{t,ij} }{ \mathsf{Pop}_{t,i} } = \left( 1 + \phi_{i} \right) \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } + e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } \]
multiply both sides with $Pop_{t, ij}$
\[ \mathsf{Food}_{t,ij} = \mathsf{Pop}_{t,i} * \left[ \left( 1 + \phi_{i} \right) \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } + e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } \right] \]
\[ \mathsf{Food}_{t,ij} = \frac{ \mathsf{Pop}_{t,i} }{ \mathsf{Pop}_{t-1,i} } * \left( 1 + \phi_{i} \right) \mathsf{Food}_{t-1,ij} + \mathsf{Pop}_{t,i} * e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } \]
with
\[ \Delta \mathsf{Pop}_{t,i} = \frac{ \mathsf{Pop}_{t,i} }{ \mathsf{Pop}_{t-1,i} } \]
it becomes
\[ \mathsf{Food}_{t,ij} = \Delta \mathsf{Pop}_{t,i} * \left( 1 + \phi_{i} \right) \mathsf{Food}_{t-1,ij} + \mathsf{Pop}_{t,i} * e^{\epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) } \]
where $\Delta Y_{t,i}$ is the per-capita GDP change
\[ \Delta \mathsf{Y}_{t,i} = \frac{ \mathsf{GDPPC}_{t,i} }{ \mathsf{GDPPC}_{t-1,i} } \]
###Linear function
Per-capita Food Consumption: \[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} + \phi_{i} * \mathsf{FoodPC}_{t-1,ij} \]
This corresponds to
\[ \frac{ \mathsf{Food}_{t,ij} }{ \mathsf{Pop}_{t,i} } = \left( 1 + \phi_{i} \right) \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } \]
multiply both sides with $Pop_{t, ij}$
\[ \mathsf{Food}_{t,ij} = \mathsf{Pop}_{t,i} * \left[ \left( 1 + \phi_{i} \right) \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } \right] \]
\[ \mathsf{Food}_{t,ij} = \frac{ \mathsf{Pop}_{t,i} }{ \mathsf{Pop}_{t-1,i} } * \left( 1 + \phi_{i} \right) { \mathsf{Food}_{t-1,ij} } \]
\[ \mathsf{Food}_{t,ij} = \Delta \mathsf{Pop}_{t,i} * \left( 1 + \phi_{i} \right) \mathsf{Food}_{t-1,ij} \]
Per-capita Food Consumption:
\[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} * \left[1 + \epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) \right]+ \phi_{i} * \mathsf{FoodPC}_{t-1,ij} \]
\[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} * \left[1 + \epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) + \phi_{i} \right] \]
\[ \frac{ \mathsf{Food}_{t,ij} }{ \mathsf{Pop}_{t,i} } = \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } * \left[1 + \epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i}\right) + \phi_{i} \right] \]
multiply both sides with $Pop_{t, ij}$
\[\mathsf{Food}_{t,ij} = \frac{ \mathsf{Pop}_{t,i} }{ \mathsf{Pop}_{t-1,i} } * \mathsf{Food}_{t-1,ij} * \left[1 + \epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i} \right) + \phi_{i}\right] \]
\[ \mathsf{Food}_{t,ij} = \Delta \mathsf{Pop}_{t,i} * \mathsf{Food}_{t-1,ij} * \left[1 + \epsilon_{ij} \log \left( \Delta \mathsf{Y}_{t,i}\right) + \phi_{i}\right] \]
Per-capita Food Consumption:
\[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} * e^{\epsilon_{ij} \left( 1 - \frac{ \mathsf{1}}{ \Delta \mathsf{Y}_{t,i} } \right)} + \phi_{i} * \mathsf{FoodPC}_{t-1,ij} \]
\[ \mathsf{FoodPC}_{t,ij} = \mathsf{FoodPC}_{t-1,ij} * \left[ e^{\epsilon_{ij} \left( 1 - \frac{ \mathsf{1}}{ \Delta \mathsf{Y}_{t,i} } \right)} + \phi_{i}\right] \]
\[ \frac{ \mathsf{Food}_{t,ij} }{ \mathsf{Pop}_{t,i} } = \frac{ \mathsf{Food}_{t-1,ij} }{ \mathsf{Pop}_{t-1,i} } * \left[ e^{\epsilon_{ij} \left( 1 - \frac{ \mathsf{1}}{ \Delta \mathsf{Y}_{t,i} } \right)} + \phi_{i}\right] \]
multiply both sides with $Pop_{t, ij}$
\[\mathsf{Food}_{t,ij} = \frac{ \mathsf{Pop}_{t,i} }{ \mathsf{Pop}_{t-1,i} } * \mathsf{Food}_{t-1,ij} * \left[ e^{\epsilon_{ij} \left( 1 - \frac{ \mathsf{1}}{ \Delta \mathsf{Y}_{t,i} } \right)} + \phi_{i} \right] \]
\[ \mathsf{Food}_{t,ij} = \Delta \mathsf{Pop}_{t,i} * \mathsf{Food}_{t-1,ij} * \left[ e^{\epsilon_{ij} \left( 1 - \frac{ \mathsf{1}}{ \Delta \mathsf{Y}_{t,i} } \right)} + \phi_{i} \right] \]
\[ \log \left( \mathsf{Loss}_{ijklm} \right) = \alpha_{1} t + \alpha_{2ijkl} \log \left( \mathsf{Production}_{ijklm} + 1 \right) + \mathsf{A}_{ijklm} \]
\[ \alpha_{2ijkl} = \beta_{20} + \beta_{2ijk} \left( \mathsf{Country:Commodity} \right)_{ijkl} + \mathsf{B}_{ijkl} \]
\[ \beta_{2ijk} = \gamma_{20} + \gamma_{2ij} \left( \mathsf{Commodity} \right) + \mathsf{C}_ijk \]
\[ \gamma_{2ij} = \delta_{20} + \delta_{2i} \left( \mathsf{Food Group} \right) + D_{ij} \]
\[ \delta_{2i} = \zeta_{20} + \zeta_{21} \left( \mathsf{Food Perishable Group}_{i} \right) + \mathsf{E}_{i} \]
lme4
ImplementationThe current implementation of the module is different from the Orange Book. The module includes imports (measuredElementTrade_5610). The formula currently included in the Orange Book may need to be subject to revision.
lossLmeModel =
lmer(log(Value_measuredElement_5016 + 1) ~
-1 +
timePointYears +
log(Value_measuredElement_5510 + 1) +
(-1 + log(Value_measuredElement_5510 + 1)|
foodPerishableGroup/foodGroupName/measuredItemCPC/geographicAreaM49)+
log(Value_measuredElementTrade_5610 + 1) +
(-1 + log(Value_measuredElementTrade_5610 + 1)|
measuredItemCPC/geographicAreaM49),
data = finalModelData)
git remote add upstream https://github.com/SWS-Methodology/faoswsLoss.git
git remote set-url origin file://t:/Team_working_folder/A/FBS-Modules/faoswsLoss/.git
uv = value / qty
qty
is a combined result of weight (mass) and supplementary quantity measures and represents an item measured in metric tonsqty = value / uv
where uv
represents the median unit value for each reporterflagObservationStatus = I
and flagMethod = e
coef
argument of boxplot.stats
R function in grDevices
coef
is positive, the whiskers extend to the most extreme data point which is no more than coef
times the length of the box away from the box. A value of zero causes the whiskers to extend to the data extremes (and no outliers be returned). The default value for coef
is 1.5. The interquartile range IQR corresponds to the length of the box, i.e. the difference between Q1 and Q3.Source: https://en.wikipedia.org/wiki/Box_plot#/media/File:Boxplot_vs_PDF.svg
faoswsTrade/modules/complete_tf_cpc/main.R
# Outlier detection
tradedata <- tradedata %>%
group_by_(~year, ~reporter, ~flow, ~hs) %>%
mutate_(
uv_reporter = ~median(uv, na.rm = T),
outlier = ~uv %in% boxplot.stats(uv, coef = out_coef, do.conf = F)$out) %>%
ungroup()
Example rows from the adjustments
SWS datatable
year | flow | hs | fcl | partner | weight | qty | value | special | reporter |
---|---|---|---|---|---|---|---|---|---|
2012 | 1 | NA | 17 | NA | 10 | NA | NA | NA | 8 |
2005 | 2 | NA | 1168 | NA | 100 | NA | NA | NA | 11 |
NA | NA | NA | 836 | NA | 0.6 | NA | NA | NA | 52 |
2013 | 4 | NA | 702 | 194 | 0.1 | NA | NA | NA | 13 |
2011 | 1 | NA | 1061 | NA | 0.1 | NA | NA | NA | 37 |
2013 | 2 | 9030000 | 671 | 231 | 10 | NA | NA | NA | 33 |
The table below shows combinations of flow
, hs
, partner
and reporter
dimensions with n >= 10 occurences. For each of these combinations, the relevant rows have been extracted from the adjustments
table and sorted by year in ascending order.
rowname | flow | hs | partner | reporter | count |
---|---|---|---|---|---|
1 | 1 | 4041048 | 67 | 210 | 13 |
2 | 2 | 8051000 | 114 | 215 | 11 |
3 | 1 | 15220099 | 68 | 150 | 10 |
4 | 2 | 22019000 | 106 | 198 | 10 |
[[1]]
year | flow | hs | fcl | partner | weight | qty | value | special | reporter |
---|---|---|---|---|---|---|---|---|---|
1999 | 1 | 4041048 | NA | 67 | 0.01 | NA | NA | NA | 210 |
2001 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2002 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2003 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2004 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2006 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2007 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2008 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2009 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2010 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2011 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2012 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
2013 | 1 | 4041048 | 890 | 67 | 0.01 | NA | NA | NA | 210 |
[[2]]
year | flow | hs | fcl | partner | weight | qty | value | special | reporter |
---|---|---|---|---|---|---|---|---|---|
1997 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2000 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2001 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2002 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2003 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2004 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2005 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2006 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2007 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2009 | 2 | 8051000 | 490 | 114 | 0.1 | NA | NA | NA | 215 |
2012 | 2 | 8051000 | 490 | 114 | 10 | NA | NA | NA | 215 |
[[3]]
year | flow | hs | fcl | partner | weight | qty | value | special | reporter |
---|---|---|---|---|---|---|---|---|---|
1999 | 1 | 15220099 | NA | 68 | 0.1 | NA | NA | NA | 150 |
2000 | 1 | 15220099 | 1277 | 68 | 0.1 | NA | NA | NA | 150 |
2007 | 1 | 15220099 | 1277 | 68 | NA | NA | weight | NA | 150 |
2008 | 1 | 15220099 | 1277 | 68 | NA | NA | weight | NA | 150 |
2009 | 1 | 15220099 | 1277 | 68 | NA | NA | m570 | NA | 150 |
2010 | 1 | 15220099 | 1277 | 68 | 0.01 | NA | NA | NA | 150 |
2010 | 1 | 15220099 | 1277 | 68 | NA | NA | weight | NA | 150 |
2011 | 1 | 15220099 | NA | 68 | f0 | NA | NA | NA | 150 |
2012 | 1 | 15220099 | 1277 | 68 | NA | NA | weight | NA | 150 |
2013 | 1 | 15220099 | 1277 | 68 | NA | NA | m1000 | NA | 150 |
[[4]]
year | flow | hs | fcl | partner | weight | qty | value | special | reporter |
---|---|---|---|---|---|---|---|---|---|
2004 | 2 | 22019000 | 631 | 106 | 0.01 | NA | NA | NA | 198 |
2005 | 2 | 22019000 | 631 | 106 | 0.001 | NA | NA | NA | 198 |
2006 | 2 | 22019000 | 631 | 106 | 0.01 | NA | NA | NA | 198 |
2007 | 2 | 22019000 | 631 | 106 | 0.001 | NA | NA | NA | 198 |
2008 | 2 | 22019000 | 631 | 106 | 0.01 | NA | NA | NA | 198 |
2009 | 2 | 22019000 | 631 | 106 | 0.001 | NA | NA | NA | 198 |
2010 | 2 | 22019000 | 631 | 106 | 0.001 | NA | NA | NA | 198 |
2011 | 2 | 22019000 | 631 | 106 | 0.01 | NA | NA | NA | 198 |
2012 | 2 | 22019000 | 631 | 106 | 0.001 | NA | NA | NA | 198 |
2013 | 2 | 22019000 | 631 | 106 | 0.01 | NA | NA | NA | 198 |
Characters preceeding numeric weights and character weights
## [1] "f" "m" "o" "qty" "value" "weight"
Distribution of numeric weights
## smaller than one
adjustments_list[["weight"]][["numeric"]] %>% .[. < 1] %>% base::summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0100 0.1000 0.2082 0.3667 0.9800
## larger than or equal to one
adjustments_list[["weight"]][["numeric"]] %>% .[. >= 1] %>% base::summary()
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 16 91 19440 711 10000000
Visual display of numeric weight distribution by type of trade flow. Log values are shown for better display.
Based on the filter in the module, two files have been prepared
adjustments = adjustments %>%
filter_(~!(is.na(year) &
weight == 1000))
weight
is equal to 1000
: adjustments_weigth1000.csvweight
is equal to 1000
and year
is specified: adjustments_weigth1000_year.csvI.e. there are only 127 out of the 1726 observations where no year is specified. This corresponds to 7.3 % of the observations.
SWS-Methodology/faoswsTrade/vignettes/Documentation/assets/trade_1.png
SWS-Methodology/faoswsTrade/vignettes/Documentation/assets/trade_2.png
Add intermediate save to balanceResidual
Incomplete extraction rates and shares
aupus_ratio
table - I need to check their status.Nutritive factors seem missing
Specify food/feed/industrial/… commodities
EU Commission - Combined Nomenclature table for 1999-2008
Key not found for dimension measuredItemCPC
01241.90
, 01919.96
and 21419.91
.faoessatest
5udSPY57
Stocks stocks-module/issues.pdf
Tourist tourist-module/issues.pdf
Industrial Use industrial-use/issues.pdf
Each of the subfolders in /modules
is supposed to contain a main.R
and a metadata.xml
file
faoswsFeed
: impute_feed
faoswsFood
: food_input_validation
impute_food
faoswsIndustrial
: impute_industrial
faoswsLoss
: impute_loss
loss_input_validation
faoswsProduction
: balance_production_identity
impute_livestock
impute_non_livestock
production_input_validation
status_report
faoswsSeed
: seed_imputation
seed_input_validation
faoswsStandardization
: pullDataToSUA
standardization
faoswsStock
: impute_stocks
faoswsTourist
: impute_tourist
faoswsTrade
: complete_tf_cpc
total_trade_CPC
faoswsFeed
: animalFunctions.R
ass_energy_factor.r
ass_protein_factor.r
buffalo_energy_factor.r
buffalo_protein_factor.r
calculateAnimalUnits.R
calculateAquaDemand.r
calculateFeedDemand.R
calculateIR.R
calculateLivestockDensity.R
camel_energy_factor.r
camel_protein_factor.r
cattle_energy_factor.r
cattle_protein_factor.r
chicken_energy_factor.r
chicken_protein_factor.r
data.R
duck_energy_factor.r
duck_protein_factor.r
faoswsFeed-package.R
feedAvail.R
getAnimalStocks.R
getQueryKey.R
goat_energy_factor.r
goat_protein_factor.r
goose_energy_factor.r
goose_protein_factor.r
horse_energy_factor.r
horse_protein_factor.r
mule_energy_factor.r
mule_protein_factor.r
optimizeFeed.R
pig_energy_factor.r
pig_protein_factor.r
rabbit_energy_factor.r
rabbit_protein_factor.r
sheep_energy_factor.r
sheep_protein_factor.r
turkey_energy_factor.r
turkey_protein_factor.r
faoswsFood
: calculateFood.R
commodity2FunctionalForm.R
FoodModule.R
functionalForms.R
getCommodityClassification.R
getFoodData.R
faoswsIndustrial
:
faoswsLoss
: addHeadingsFCL.R
faoswsLoss-package.R
getImportData.R
getLossData.R
getLossFoodGroup.R
getProductionData.R
getSelectedLossData.R
imputeLoss.R
mergeAllLossData.R
removeCarryLoss.R
requiredItems.R
saveImputedLoss.R
faoswsProduction
: balanceAreaHarvested.R
balanceProduction.R
balanceProductionTriplet.R
computeYield.R
ensureProductionInputs.R
ensureProductionOutputs.R
expandMeatSessionSelection.R
faoswsProduction-package.R
getAllHistory.R
getAllYieldKey.R
getAnimalMeatMapping.R
getImputationParameters.R
getProductionData.R
getProductionFormula.R
getYieldData.R
imputeProductionTriplet.R
isPrimary.R
nonImputationItems.R
okrapd.R
processProductionDomain.R
productionFormulaParameters.R
productionProcessingParameters.R
selectImputationItem.R
selectMeatCodes.R
transferParentToChild.R
faoswsSeed
: areaRemoveZeroConflict.R
buildCPCHierarchy.R
ensureNoConflictingAreaSownHarvested.R
faoswsSeed-package.R
fillCountrySpecificSeedRate.R
fillGeneralSeedRate.R
getAllAreaData.R
getAllCountries.R
getAllItemCPC.R
getAllYears.R
getAreaData.R
getCountryGeneralSeedRate.R
getCountrySpecificSeedRate.R
getOfficialSeedData.R
getSelectedSeedData.R
getWorldBankClimateData.R
imputeAreaSown.R
mergeAllSeedData.R
removeCarryForward.R
removeManualEstimation.R
saveSeedData.R
seedData.R
faoswsStandardization
: addMissingElements.R
adjustCommodityTree.R
balanceResidual.R
calculateAvailability.R
collapseEdges.R
computeFbsAggregate.R
defaultStandardizationParameters.R
elementCodesToNames.R
elementNamesToCodes.R
faoswsStandardization-package.R
fbsTree.R
finalStandardizationToPrimary.R
findProcessingLevel.R
getFBSTree.R
getOldCommodityTree.R
mapCommodityTree.R
markUpdated.R
plotCommodityTrees.R
plotSingleTree.R
printSUATable.R
processForward.R
standardizationWrapper.R
standardizeTree.R
usaWheat.R
faoswsStock
: getAllCountries.R
getProductionData.R
getStockData.R
getStocksCPC.R
getTotalTradeData.R
faoswsTourist
: getAllCountries.R
getAllItemCPC.R
getCommodityClassification.R
getFoodConsumption.R
getNutrientConversionFactor.R
faoswsTrade
: applyadj.R
convertComtradeM49ToFAO.R
convertGeonom2FAO.R
convertHS2FCL.R
convertMeasuredElementTrade.R
convertTLPartnerToFAO.R
data.R
descFCL.R
faoAreaName.R
getAgriHSCodes.R
getAllItems.R
getlistofadjs.R
hsInRange.R
is.SWSEnvir.R
trailingDigits.R
trailingDigits2.R
verifyTarifflinePartners.R